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Abstract

in Ag nanoparticles.

Ultrafast relaxation dynamics of diamond-like carbon (DLC) films with embedded Ag nanoparticles (DLC:Ag) and
photovoltaic properties of heterojunctions consisting of DLC:Ag and crystalline silicon (DLC:Ag/Si) were investigated
by means of transient absorption (TAS) spectroscopy and photovoltaic measurements. The heterojunctions using
both p type and n type silicon were studied. It was found that TAS spectra of DLC:Ag films were dependent on the
used excitation wavelength. At wavelengths where Ag nanoparticles absorbed light most intensively, only DLC
signal was registered. This result is in good accordance with an increase of the DLC:Ag/Si heterojunction short
circuit current and open circuit voltage with the excitation wavelength in the photovoltaic measurements. The
dependence of the TAS spectra of DLC:Ag films and photovoltaic properties of DLC:Ag/Si heterostructures on the
excitation wavelength was explained as a result of trapping of the photoexcited hot charge carriers in DLC matrix.
The negative photovoltaic effect was observed for DLC:Ag/p-Si heterostructures and positive (“conventional”) for
DLC:Ag/n-Si ones. It was explained by the excitation of hot plasmonic holes in the Ag nanoparticles embedded
into DLC matrix. Some decrease of DLC:Ag/Si heterostructures photovoltage as well as photocurrent with DLC:Ag
film thickness was observed, indicating role of the interface in the charge transfer process of photocarriers excited
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Background

Nanostructures of IB group metals like Cu, Ag, and Au
are interesting because of localized surface plasmon reson-
ance (LSPR) effect [1]. One of the prospective application
areas for the plasmonics and plasmonic nanomaterials is
photovoltaics where plasmonic nanostructures and meta-
materials are used to control an interaction between light
and solar cell. The increased optical path of light in solar
cell as well as local increase of the absorption coefficient
in vicinity of the plasmonic nanoparticle can be achieved
[1, 2]. Recently, it was found that LSPR can be used for
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direct control of electrical properties of the solar cell. Plas-
monic nanostructures, being in contact with the semicon-
ductor, can either inject electrons into the semiconductor
or trap electrons from the semiconductor as a result of
the free charge carrier generation after interaction with
the photons of the appropriate energy [2]. Strong photo-
voltaic effect was observed for subbandgap photons of
energy close to the LSPR energy of gold nanoparticles,
when TiO, substrate of the dye-sensitized (excitonic) solar
cell (DSSC) was covered by non-percolating layer of Au
nanoparticles [3]. Such effect in principle can be applied
for inorganic semiconductor (free charge carrier) solar
cells, too. Till now, this effect was mostly studied for TiO,
covered by Au or Ag nanoparticles as well as Ag core shell
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nanoparticles covered by TiO,. However, the use of the
nanoparticles synthesized by different wet chemical
routes is not beneficial from the practical application
point of view, i.e., because of the complications inte-
grating this process into semiconductor device fabri-
cation technologies. As an alternative approach to the
fabrication methods mentioned above, deposition of
metal and dielectric (semiconductor) nanocomposites
by reactive magnetron sputtering or related physical
vapor deposition-based methods could be considered.
In such a way, metal nanoparticles embedded into the
semiconductor or dielectric matrix can be grown during
the same deposition process. In addition, dielectric or
semiconducting matrix of the nanocomposite film with
tunable refractive index can be used for the additional con-
trol of the optical properties of the plasmonic nanomater-
ial. Moreover, it can be applied to protect nanoparticles
from unwanted environmental effects such as oxidation of
Ag nanoparticles. It should be mentioned that Ag nano-
particles as a plasmonic material have some advantages
over Au nanoparticles due to higher intensity of the LSPR
[4], lower optical losses [5], and larger solar energy conver-
sion efficiencies [6]. However, silver nanoparticles are
prone to rapid surface oxidation when exposed to ambient
conditions [7]. Thus, use of the plasmonic nanocomposite
would eliminate the main advantage of Au over Ag—its
chemical inertness. However, in such a case, one should
look for other types of dielectric matrix because mostly
used TiO, as an oxide has some disadvantage as a matrix
material. It is not able to efficiently protect embedded
Ag nanoparticles from the oxidation [8, 9]. On the
other hand, there are only few studies on plasmonic
photoelectron excitation and emission in the systems
containing semiconductor (or dielectric) material other
than TiO,. Particularly, research on photovoltaic prop-
erties of the Ag core shell nanoparticles covered by
oxide dielectric SiO, [10, 11] as well as semiconducting
oxide Fe,Oj thin layer on the top or beneath Au nano-
particles should be mentioned [12].

As one of the alternatives of matrix for Ag nanoparti-
cles, amorphous diamond-like carbon (DLC) could be
considered. DLC is an amorphous allotrope of carbon
consisting of the sp” bonded carbon nanoclusters em-
bedded into the sp> bonded carbon matrix. DLC is well
known for its properties like high hardness, low fric-
tion, and chemical inertness as well as biocompatibility
[13-16]. Refractive index, optical transmittance in a
broad optical spectrum, including visible light and near
IR ranges, and electrical properties of DLC films can be
varied in a wide range choosing the deposition condi-
tions. DLC films are deposited at room temperature by
using a wide variety of the plasma based vacuum de-
position processes that are compatible with the semi-
conductor device technology. This leads to different
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fields of applications such as optical windows, magnetic
storage disks, bar code scanners, various mechanics,
car parts, solid lubricants, biomedical coatings and
micro-electromechanical devices [13, 15, 17], piezore-
sistive sensors [18-20], microwave switches [21], and
electrically active high-power device passivation films
[22]. DLC matrix was proved as an excellent matrix for
metal nanoparticles being able to prevent nanoparticles
from chemical and mechanical hazards.

Considering photovoltaic properties of structures that
include plasmonic nanoparticles, one should pay attention
to the internal photoemission of the plasmonic hot elec-
trons generated at the surface of the nanoparticles that is
limited by hot electron recombination processes. Hot
electron population usually decays due to the three main
processes: thermalization of the electrons or in other
words electron-electron scattering; electron-phonon inter-
action which describes hot (thermalized) electron energy
transfer to the nanoparticle lattice; and finally, energy
transfer from nanoparticle to the surrounding matrix. The
process time scales are 10-100 fs, 0.1-5 ps, 1-100 ps,
respectively [23-27]. These processes can become even
more complex in the case of the nanoparticles embedded
into the dielectric or semiconductor matrix.

This article aims at understanding of charge carrier
generation, transfer and recombination processes in
DLC films with embedded Ag nanoparticles (DLC:Ag
nanocomposites), and role of these processes in the
performance of photovoltaic properties of DLC:Ag/Si
heterostructures. The analysis was performed by using
transient absorption (TAS) spectroscopy and photovoltaic
measurements. The unusual dependence of the TAS
spectra of DLC:Ag films and photovoltaic properties of
DLC:Ag/Si heterostructures on the excitation wavelength
was found and explained.

Methods

Deposition of Thin Films and Heterostructures

In the present study, DLC:Ag films were deposited by
direct current (DC) unbalanced magnetron sputtering
of silver target. The diameter of magnetron was 3".
Polished polycrystalline alumina, monocrystalline sili-
con, and quartz substrates were used. Mixture of the
hydrocarbons (acetylene) and argon gas was used in
the reactive magnetron sputtering. In all experiments,
substrate-target gap was set at 10 cm, magnetron tar-
get current was 0.1 A, base pressure was 5-10"* Pa and
work pressure was (4 + 1) 10~ Pa. Samples were deposited
on grounded substrates. Ar gas flux was 80 sccm and
C,H, gas flux was 7.8 sccm. As reported by our previous
study [28], DLC:Ag films deposited using these conditions
revealed the highest SERS signal intensity between all
DLC films containing Ag investigated. Thus, strong plas-
monic field can be supposed. According to our previous
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XPS measurement data, these films contained 22 at.% of
Ag [19, 29] while average size of the Ag nanoclusters
was ~10 nm [30]. More information on chemical compos-
ition and structure of the samples can be found in [19, 29].

In most experiments, thickness of the films was
50 nm. To study the influence of the film thickness on
the photovoltaic properties of the samples, film thickness
was changed in 10-150 nm range.

Fused silica was used as a substrate for studying of the
optical properties. p and n type monocrystalline silicon
was used as a substrate to study the photovoltaic proper-
ties of DLC:Ag/Si heterostructures. Vacuum-evaporated
Al was used as electrode material (Fig. 1).

Transient Absorption Measurements

The samples of DLC:Ag film on quartz were excited
using ultrafast Yb:KGW laser Pharos (Light Conversion)
with a regenerative amplifier generating 200 kHz repeti-
tion rate 290 fs duration pulses at 1030 nm wavelength.
Avantes 2048 spectrophotometer was used for the
steady-state absorption measurements. The proper exci-
tation wavelength chosen from the highest absorption
amplitude in the steady-state absorption spectra in most
cases was tuned to 407, 470, 528, 627, and 736 nm with
a collinear optical parametric generator Orpheus and
harmonic generator Lyra (Light Conversion).

The samples of DLC:Ag film on quartz were probed
with a white light supercontinuum generated using 2-
mm-thick sapphire plate excited with the fundamental
laser wavelength at 1030 nm. The spectral range of
supercontinuum as well as the detection range of the
TAS spectra dynamics was from 480 to 1000 nm. The
excitation beam was focused to a spot of about 700 pm
in diameter, while the probe white light supercontinuum
beam diameter was of about 500 pum. Further details on
the optical setup used can be found elsewhere [31].

Anode
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Fig. 1 Schematic diagram of the sample used for studies of the
photovoltaic properties of DLC:Ag/Si heterostructures
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OriginPro 2015 was used for the exponential and
bi-exponential decay fitting of the TAS spectra.

Photovoltaic Measurements

Photovoltaic properties of the DLC:Ag/Si heterostructures
(Fig. 1) were investigated by using picoammeter Keithley
5487 and different light sources. In most experiments,
light-emitting diodes (LED) were used as monochromatic
sources of different wavelength light. Central LED emis-
sion wavelengths were very close to the ones used in the
TAS measurements of DLC:Ag on quartz, i.e., 406, 470,
528, 627, and 736 nm (Fig. 2). In some cases, solar spectra
simulator Scientech SF150B (Scientech Inc., Canada) was
used as a broadband light source. Air Mass Filter AM1.5
spectra (300—-1100 nm) was applied.

Results

Optical Properties of DLC:Ag Nanocomposites
Steady-State Optical Properties of DLC:Ag Nanocomposites
First of all, optical absorption spectra of DLC:Ag
nanocomposite as well as DLC matrix used should be
described; therefore, pure DLC and DLC:Ag steady-
state absorption spectra are presented in Fig. 2. The
absorption peak at about 470 nm is attributed to the LSPR
absorption, while increase of the absorption at 300 nm
and lower wavelengths is related to the absorption in DLC
matrix [29]. One can see that absorption due to DLC
matrix above 600 nm becomes negligible.

Dynamic Optical Properties of Pure DLC Matrix

In order to show how DLC interacts with plasmonic Ag
nanoparticles in the case of DLC:Ag nanocomposites,
first, the undoped hydrogenated DLC matrix (having no
silver nanoparticles) was investigated by means of TAS
spectroscopy (Fig. 3).
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Fig. 2 Steady-state absorption spectra of DLC:Ag nanocomposite
film deposited on the fused silica substrate. The arrows at 407, 470,
528,627, and 736 nm indicate excitation wavelengths used in the
TAS spectroscopy and photoelectrical measurements
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Fig. 3 TAS spectra measured at different time of delay (a) and traces
recorded at different wavelengths of TAS spectra (b) of neat DLC
matrix. For the excitation of DLC matrix 7 p/cm? intensity, 400 nm
wavelength was used

One can see that the TAS spectra of DLC matrix consist
of positive signal in all measured spectral region (Fig. 3a).
This signal can be attributed to the signal of induced
absorption. In the region of the shortest wavelengths
(below 500 nm), the positive signal decreases significantly
showing that different processes take place which we can
attribute to the ground-state bleaching [32].

Careful analysis of the TAS spectra dynamics (Fig. 3b)
revealed that the curves of relaxation of pure DLC
matrix for the all used excitation wavelengths consist of
two components. Using bi-exponential decay function,
the relaxation times of DLC matrix were revealed which
are 0.41 £ 0.02 ps and 6.39 + 0.45 ps, respectively, (decay
kinetics at 600 nm was used for fitting because of the
least noise and highest amplitude signal in this region).

Dynamic Optical Properties of DLC:Ag Nanocomposites

TAS spectra of the DLC:Ag nanocomposites were mea-
sured after excitation at 406 nm, 470 nm, 528 nm (not
shown here because of very weak and noisy signal),
627 nm, and 736 nm (Fig. 4). The wavelengths of pump
impulses represent the same wavelengths used for further
photovoltaic measurements of DLC:Ag/Si heterostructures.
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TAS spectra dynamics show clear dependence on the
wavelength of excitation, e.g.,, DLC:Ag nanocomposites
excited at 406, 470, and 528 nm show only positive
signal in all spectra region, except dramatic amplitude
decrease below 500 nm. The origin of this decrease may
be similar to the pure DLC matrix.

Sample of DLC:Ag excited at higher wavelengths of
627 and 736 nm shows strong, short-living negative sig-
nal. The relaxation of this signal is much faster than that
of the positive one. The lifetime of this signal suggests
that it could be attributed to LSPR relaxation, and the
process called electron-phonon interaction is responsible
for this short decay [23].

Fitting of relaxation lifetime of the negative signal for
the sample excited at 627 nm, using exponential decay
function on TAS traces at 550 nm (we tried to avoid
noises at 500 nm) provides a value of 0.36 +0.04 ps
(Table 1). This value is similar to the results reported in
[24]. On the other hand, it is at least one order faster
than the ones declared in the references [33, 34]. These
differences may occur because of different excitation in-
tensities used in [33]. In our case, it was 50 u]/cm2 that
is similar to the intensity used in [24] (50-200 u]/cmz).
While in [33], much weaker excitation intensity was
used (5 mJ/cm?).

No phonon-phonon interaction was registered. Prob-
ably, TAS signal of DLC overruns this signal, which
should have quite low intensity [34]. After less than
0.5 ps, the negative signal decays and transforms to the
long-lived positive signal, which can be attributed to
DLC matrix TAS signal. This approach allows to explain
TAS signal of DLC:Ag after excitation at 627 and
736 nm, but unfortunately, it does not explain so well
DLC:Ag relaxation signal after excitation at 406, 470,
and 528 nm wavelengths, despite the fact that Ag nano-
particles in this spectral region should absorb light more
intensively (Fig. 2).

The main peculiarity of these spectral data (406, 470,
and 528 nm excitation) is an absence of the negative sig-
nal and high-relaxation lifetime that appears too long for
the relaxation of plasmons. In fact, these TAS spectra
are much more similar to the ones recorded for pure
DLC matrix signal than to the LSPR of Ag nanoparticles
relaxation dynamics. One could suppose that only DLC
matrix is excited in this area, but the steady-state
absorption spectra in Fig. 2 show different data (the in-
tense absorption peak of DLC:Ag nanocomposites is at
around 470 nm). While the absorption of DLC matrix
and DLC:Ag nanocomposites is comparable at 406 nm,
absorption by Ag nanoparticles at 470 nm should be
larger than that by DLC matrix. Nevertheless, the TAS
signal of DLC matrix completely overruns the signal of
LSPR of Ag nanoparticles. This probably can be ex-
plained by interaction between the DLC matrix and Ag
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401 2 3 4 500 1000

Delay time (ps)

Table 1 Lifetimes of TAS spectra relaxation (the kinetics at
600 nm probe wavelengths are presented because they
demonstrate best SNR)

Sample Excitation Probe 71 (ps) 7, (ps)
wavelength wavelength
(nm) (nm)
DLC 400 600 041+£002 6.39+045
DLCAg 406 600 0.75+0.09 6.11+£0.60
470 600 0.70+0.06 736+048
627 550 036+0.04 -
736 500 022+003 -

Lifetimes of the negative signal relaxation of DLC:Ag 22 at.% were explored for
TAS data received under excitation at 627 and 736 nm

nanoparticles as charge transfer from Ag nanoparticles
to DLC matrix, although it should be a very fast process
because we were not able to distinguish it in the TAS
relaxation dynamics.

We have also compared the relaxation decay times of
DLC:Ag nanocomposites excited at 406 and 470 nm with
the ones of pure DLC matrix. Fitting by the bi-exponential
decay function shows that relaxation times of the “slow”
relaxation component for DLC:Ag films (excited by 406
and 470 nm) are very similar to ones of the DLC matrix,
showing that all these three TAS spectra represent the
dynamics of DLC matrix (Table 1). Slow relaxation
component disappears in the case of the DLC:Ag film
TAS spectra excited by higher wavelength light (627 and
736 nm). Thus, it can be supposed that this component is
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related with processes in DLC matrix (Table 1). Relaxation
dynamics of the positive signal consists of two compo-
nents “fast” (r;) and slow (7). The negative signal relax-
ation has only fast relaxation term in the negative area.
That is why, only this component of relaxation time was
explored. TAS signal changes fast from the negative to
long-living positive signal. In order not to increase confu-
sion, only relaxation time of short-living negative signal
was included into Table 1.

Photovoltaic Properties of DLC:Ag/Si Heterostructures
Figures 5 and 6 illustrate photovoltaic properties of
DLC:Ag/Si heterojunctions. It can be seen that in the
case of the DLC:Ag/p-Si heterojunction, negative photo-
voltaic effect was observed (Fig. 5a).

According to Fig. 6a, b, open circuit voltage and short
circuit current increase with the excitation wavelength.
Such a behavior is a bit unexpected, as in numerous
studies on generation of the plasmonic hot carriers, the
conversion efficiency of incident photon to current was
highest when the excitation wavelength was equal to the
plasmonic absorbance peak wavelength [3, 10, 11, 35-41].

-7
8x10” ——270 nm LED
7107 E oo 528 nm LED

7 E S o ——627 nm LED
6x10” pE — 736 nm LED
< 5x107 — Reference (dark
: 4x1 0'7 e \}sollage V)
S 7
g 3x10 i
5 g
o 2x10
1x107
0
-Ax107 f_— . . ,
-0.04 -0.02 0.00 0.02 0.04
b
2x107 |
1x107 |
< 0
(=
g x107f
5 ~— 470 nm LED
(8] 7k 528 nm LED
-2x10 —— 627 nm LED
2f ——736 nm LED
-3x10 Reference (dark)
ax107 E= . . .
-0.04 -0.02 0.00 0.02 0.04
Voltage (V)

Fig. 5 Typical I-U dependences of DLC:Ag/p-Si (@) and DLC:Ag/n-Si (b)

heterojunctions illuminated with light of different wavelength. In the

inset of Fig. 5a, dark |-V dependence of DLC:Ag/p-Si heterojunction in
broader voltages range is presented
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Fig. 6 The dependence of the open circuit voltage (a) and short
circuit current (b) on excitation wavelength for DLC:Ag/n-Si and
DLC:Ag/p-Si heterostructures

Afterwards, effects of the DLC:Ag film thickness on
resultant photovoltaic properties of the herostructures
were studied. Due to similar dependence of the photovol-
taic parameters on the excitation wavelength for all the
samples studied, effects of the DLC:Ag film thickness were
investigated by using a solar spectrum simulator. In such
a way, influence of the different wavelength photons was
integrated by applying standardized light source. No clear
dependence of the photovoltaic properties of DLC:Ag/p-Si
heterojunctions on DLC:Ag film thickness in 10-50 nm
range was found. Increase of the thickness up to 150 nm
resulted even in some drop of the short circuit current
and open circuit voltage (Fig. 7).

Discusion

Analyzing photovoltaic properties of the studied hetero-
structures, one can see negative photovoltaic effect in
the case of DLC:Ag/p-Si heterostructures. While for the
DLC:Ag/n-Si heterostructures, positive (“conventional”)
photovoltaic effect was registered. It should be men-
tioned that negative photovoltaic effect and negative
open circuit voltage were reported in the case of some
plasmonic nanostructures [42—44]. Particularly, visible
plasmon irradiation of citrate coated Ag nanoparticles
resulted in photogeneration of the negative photovoltage
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Fig. 7 Open circuit voltage (a) and short circuit current (b) of
DLC:Ag/p-Si heterojunction vs nanocomposite film thickness. Solar
simulator with AM1.5 spectra was used for the photoexcitation

[42, 43]. It was explained by citrate photooxidation by
Ag plasmon “hot holes” [43]. The negative photovoltage
was observed for some ZnO:Al/SiO,/p-Si structures,
when 1740-1925 nm wavelength light was used for exci-
tation [44], while positive (conventional) photovoltaic ef-
fect was detected for 560 nm wavelength excitation.
Thus, observed negative photovoltaic effect in DLC:Ag/
p-Si heterostructure is mainly related to the DLC:Ag
film. As for DLC/p-Si heterojunctions, only positive
(conventional) photovoltaic effect was reported (see e.g.,
[45, 46]), one could suggest that some LSPR-related hot
carrier generation processes took place in our experi-
ment. Plasmonic photoexcitation of the hot holes can be
supposed. This process should clearly prevail over exci-
tation of the plasmonic hot electrons. It should be men-
tioned that according to the theoretical study presented
in [47], in the case of Ag at some excitation wavelengths,
only hot holes are collected and no electrons.

No clear dependence of the DLC:Ag/Si heterostruc-
tures photovoltage and photocurrent on DLC:Ag film
thickness was found in 10-50 nm range, while meaning-
ful decrease of photovoltage and photocurrent was ob-
served for the DLC:Ag films with thickness of 150 nm.
This effect was observed despite strong dependence of
the absorbance of the DLC:Ag films on thickness. It
seems that photoemission of the plasmonic charge
carriers to the silicon takes place only from a very thin
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DLC:Ag layer that is close to the DLC:Ag/Si interface.
Taking into account the data presented in Fig. 7 and
discussions above, it can be supposed that in our case,
average mean free path of the charge carriers photoe-
mitted from Ag nanoparticles is clearly no more than
the smallest thickness of the DLC:Ag films studied in this
article, i.e., —10 nm. It should be mentioned that in [30],
we have shown that the Ag nanoparticle size in DLC was
5-10 nm according to TEM, while according to the AFM
data, most often, Ag nanoparticle size was ~10 nm.
According to Fig. 4, the negative absorbance peaks, repre-
senting photogeneration of the plasmonic charge carriers,
disappears in ~0.5 ps. Thus, it seems that due to the fast
recombination of the photoelectrons, photoemission
mostly takes place from the Ag nanoparticles, which
are in close vicinity with the DLC:Ag/Si interface. How-
ever, taking into account the influence of the inter-
action between DLC matrix and Ag nanoparticles at
lower excitation wavelength, it can be supposed that
most of the photoelectrons reach silicon via ultrathin
interlayer of DLC. Thus, it seems that recombination or
trapping of the photoexcited charge carriers in DLC
matrix takes place. Plasmonic photocarriers excited in
Ag nanoparticles, which are located too far from the
DLC:Ag/Si interface are unable to reach silicon. Decrease
of the photovoltaic parameters with the increase of the
DLC:Ag film thickness up to 50 nm can be explained by
effects of the increased light absorption in the film. Less
photons reach the DLC:Ag film zone near the interface
with Si. Finally, it results in the decreased photocurrent
and photovoltage.

Correlation between the optical absorbance spectra
excited by different wavelength light and respective
photovoltaic characteristics of the samples can be identi-
fied. Particularly, TAS spectra excited by 406-528 nm
light are much more similar to the ones recorded for
pure DLC matrix signal than to LSPR of Ag nanoparti-
cles relaxation dynamics. Only in the case of the samples
excited by 627 and 736 nm, the negative absorption
signal, e.g., generation of the hot charge carriers can be
seen. Such behavior was found despite that maximum of
the plasmonic absorption peak was observed at ~500 nm.
On the other hand, open circuit voltage and short circuit
current of the samples clearly increased with the excita-
tion wavelength. Such tendency was observed despite the
decreased lifetime of the photoexcited charge carriers
measured by TAS (see 1; in Table 1). Thus, according to
Table 1, decrease of the photovoltaic parameters with the
excitation wavelength should be expected, as higher pho-
toexcited charge carrier lifetime results in the increased
short circuit current. Yet, in our case, the reverse tendency
is observed. It seems that at lower excitation, wavelength
influence of the DLC matrix results in suppression of the
surface plasmon resonance-related hot charge carrier
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photogeneration. Alternatively, one can suppose that
insertion of Ag nanoclusters into the DLC matrix results
in the rearrangement of the density of the states (DOE).
Particularly in [47], it was shown that in some cases, hot
carrier collection efficiencies are higher in the case of 700
and 1500 nm excitation wavelengths in comparison with
the higher energy 400 nm wavelength photons.

It should be mentioned that in numerous studies, hot
charge carrier generation or photovoltaic quantum effi-
ciency spectra correlate with the absorption spectra of
the plasmonic absorber. In most mentioned studies, Ag
or Au nanoparticles (nanostructures) were embedded
into the wide bandgap semiconductor TiO, or were at the
interface with TiO,. However, it seems that quantum effi-
ciency spectra of Au nanostructure/Si junctions follow
this approach, too [48]. Only in [48], some similarities
with the present study were observed, where deposition of
Au nanoparticles on the magnetron-sputtered amorphous
silicon film resulted in the increased photocurrent in 600—
1000 nm range as well as increase of the photocurrent
enhancement with photon wavelength in 450-1000 nm
range with increased photon wavelength. No clear correl-
ation between the changes of the photocurrent spectra
and absorbance spectra of the plasmonic nanostructures
was found in [48]. In [43], no correlation between the
negative photovoltage excited in Ag nanoparticle and
citrate system by different wavelength light and Ag nano-
particle optical absorption spectra was found, too. How-
ever, in [43], negative photovoltage increased with exciting
photon energy. While in the present study, photovoltage
decreased with the exciting photon energy.

The tendencies observed in this research can be ex-
plained by taking into account possible influence of the
traps. The results reported in [49] should be mentioned as
well. Negative photoconductivity was also observed for
InAs nanowires [49]. Origin of the negative photocon-
ductivity was attributed to the depletion of conduction
channels by light-assisted hot-electron trapping [49].
Photoconductivity lowering was excitation wavelength
dependent. Photocurrent decreased more when excitation
wavelength was shorter (higher photon energy) [49]. In
our case, we can suppose that at high excitation energies
trapping of the hot charge carriers in DLC matrix or at
the Ag nanoparticle/DLC interface takes place. Thus, pho-
toexcitation of the plasmonic charge carriers competes
with the trapping process. It results in suppression of the
bleaching in DLC:Ag transient spectra excited by higher
energy photons as well as decreased photocurrent and
photovoltage. Energy of the hot charge carriers excited by
longer wavelength photons is below trap-related states. In
such a case, photoexcited plasmonic charge carriers avoid
trapping. It results in the increased sample’s photocurrent
and photovoltage at higher excitation wavelengths. This
fact correlates with the TAS measurements when in TAS
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spectra of DLC:Ag films excited at higher wavelengths of
627 and 736 nm strong negative signal was observed, too.

We suppose that after excitation of the samples with
shorter wavelengths (406—528 nm), charge transfer effi-
ciency overruns hot electron relaxation. That is why we
do not observe dynamics that we can attribute to LSPR
relaxation, and DLC matrix signal dominates in the TAS
spectra. While at longer wavelengths (627 and 736 nm),
LSPR relaxation is much more effective process and we
can see it clearly in the signal. From the first look, the
photovoltaic characteristics should be better when exci-
tation at shorter wavelengths is applied, but high-energy
defects in the DLC matrix trap charges and reverse
photovoltaic dependencies on the excitation wavelength
completely. It is worth to mention that in some cases of
plasmonic nanomaterials, photoexcitation of the charge
carrier is more efficient at higher wavelengths. Particu-
larly, under excitation at longer wavelengths (~700 nm),
free electrons and holes can be generated in Ag nano-
particles while at shorter wavelengths (~400 nm), only
generation of holes is effective [47].

Conclusions

In conclusion, hot plasmonic holes were excited in Ag
nanoparticles embedded into the DLC matrix. Therefore,
negative photovoltaic effect was observed for DLC:Ag/p-Si
heterostructures and conventional positive for DLC:Ag/n-Si
ones. Some decrease of the DLC:Ag/Si heterostructures
photovoltage and photocurrent with DLC:Ag film thickness
was found in 10—150 nm range. It means that photocarriers
excited in the Ag nanoparticles, which are located too far
from the DLC:Ag/Si interface, are unable to reach silicon
due to the recombination. The dependence of the TAS
spectra of DLC:Ag films and photovoltaic properties of
DLC:Ag/Si heterostructures on the excitation wavelength
can be explained by trapping of the hot charge carriers in
DLC matrix. This process prevailed over plasmonic photo-
generation of the hot charge carriers at lower excitation
wavelengths, while energy of the hot charge carrier’s photo-
excited by longer wavelength photons was lower than the
energy of the trap states. Therefore, these lower energy
carriers avoided trapping by DLC defects.
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